Link to download- https://docs.google.com/document/d/12i1mAKKJbFj92g9wWyRGPC_unyjmo-lE/edit?usp=sharing&ouid=111175923012321593217&rtpof=true&sd=true


EXPERIMENT NO. 1

Object: To study the Hall Effect and to determine the hall coefficient.

Observation:

Resistivity ‘ρ’ = 0.05 ohm-m.

Table I

Magnetic field, B = 2 Kilo Gauss = 3×10-1 T (1 Gauss = 10-4 T)

 

S.No.

Current I (mA)

Hall voltage VH (mV)

Hall coefficient (m3/C)

1.

1

-0.6

1.5×10-3

2.

2

-1.1

1.375×10-3

3.

3

-1.7

1.417×10-3

4.

4

-2.3

1.438×10-3

5.

5

-2.8

1.40×10-3

6.

6

-3.3

1.375×10-3

7.

7

-3.8

1.357×10-3

8.

8

-4.3

1.344×10-3

9.

9

-4.9

1.361×10-3

10.

10

-5.5

1.375×10-3

 

 

 

 

 

 

 

 

 

 

 

Table II

 

Current I = 2 mA

 

S.No.

Magnetic field

Hall voltage VH (mV)

Hall coefficient(109mm3/C)

k gauss

Wb/m2

1.

0.5

0.05

-0.2

 1.0×10-3

2.

1

0.1

-0.5

1.25×10-3

3.

1.5

0.15

-0.7

1.167×10-3

4.

2

0.2

-1.0

1.25×10-3

5.

2.5

0.25

-1.3

 1.3×10-3

6.

3

0.3

-1.6

1.333×10-3

7.

3.5

0.35

-1.9

1.357×10-3

8.

4

0.4

-2.2

1.375×10-3

9.

4.5

0.45

-2.5

1.389×10-3

 

 

 

Calculations:

1.    Slope  =  = -0.533 V/A

2.   Slope  =  = -6 x  V/A

 

RH1 = (Slope  = -1.332 x   m3/C

 

RH2 = (Slope   = -1.5 x  m3/C

 

[Note: VH, I, t and B are to be taken in volts, amperes, meters and Wb/ m2 respectively].

Mean = RH =  =  =  =   m3/C.

 

Result:

1.    The polarity of the Hall Voltage is Negative. Therefore, the given semiconductor is of N Type.

2.  The value of Hall coefficient is  m3/C.

 

 

 

 

 

 

 

 

 

 

 

 

EXPERIMENT NO. 2

 

Object: To determine wavelength of LASER light using diffraction phenomena.

 

Observation for Grating Diffraction:

 

Number of lines on the diffraction grating = a = 300 per mm

                                                      N = a×10 = 3000 per cm

                              Grating element (a+b) = 1/N = (1/3) ×10-3 cm

 

Distance between grating and screen = r = 25.5 cm

 

S.No.

Order of Spectrum (n)

Distance between Bright Spots (cm)

Angle of Diffraction nθ =

(radian)

θ = × (degree)

sinθ

nλ = (a+b) sin θ

 

 

On one side (x1)

On other side (x2)

Mean x

 

 

 

 

1.

For 1st order n = 1

5

5.1

5.05

0.1980

11.35

0.196

0.6468 × 10-4

2.

For 2nd order n = 2

10

10.5

10.25

0.4019

23.03

0.391

1.2903 × 10-4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculations:

For n = 1;

nλ = 0.6468 × 10-4 cm

 = 0.6468 × 10-4 cm

For n = 2;

nλ = 1.2903 × 10-4 cm

 = 1.2903 × 10-4 / 2 = 0.6451 × 10-4 cm

Mean λ =  = cm

λ = 645.95 nm

 

Relative % error =  × 100 = − 2.07%

 

Result:

By diffraction grating = λ ± δλ = 645.85 ± 2.07% nm

 

 

               

 

 

 

 

 

 

 

 

 

 

EXPERIMENT NO. 3

Object: To sketch the following basic op-amp circuits using ME 625 and verify then theoretically –

a.    Inverting amplifier

b.    Non-inverting amplifier

c.     Summing amplifier

d.    Differential amplifier

Inverting Amplifier:

Observation Table 1:

 

Vin = 1 volt

 

Vout

Vout

Vout

Vout

R1

RF = 10 kΩ

RF = 22 kΩ

RF = 33kΩ

RF = 47 kΩ

 

Experimental

Calculated

Experimental

Calculated

Experimental

Calculated

Experimental

Calculated

10

-0.99

-1.0

-2.16

-2.2

-3.24

-3.3

-4.67

-4.7

22

-0.44

-0.45

-1.0

-1.0

-1.45

-1.5

-2.10

-2.13

33

-0.30

-0.30

-0.65

-0.66

-1.0

-1.0

-1.40

-1.42

47

-0.20

-0.21

-0.45

-0.46

0.67

-0.7

-1.0

-1.0

Avg

0.4825

0.49

1.086

1.106

1.786

1.83

2.72

2.752

 

 

 

 

 

 

Non-Inverting Amplifier:

Observation Table 2:

 

 

Vout

Vout

Vout

Vout

R1

RF = 10 kΩ

RF = 22 Kω

RF = 33kΩ

RF = 47 kΩ

 

Experimental

Calculated

Experimental

Calculated

Experimental

Calculated

Experimental

Calculated

10

2.6

2.0

3.2

3.2

4.27

4.3

5.72

5.7

22

1.45

1.45

-

2

2.46

2.5

3.12

3.13

33

1.28

1.30

1.65

1.66

-

2

2.40

2.42

47

1.19

1.21

1.45

1.46

1.68

1.7

-

2

Avg

1.63

1.49

2.116

2.106

2.80

2.83

3.74

3.75

 

 

 

 

 

 

 

Summing Amplifier:

Observation Table 3

Vin1

Vin2

Vout

Experimental

Calculated

1 V

1 V

-1.97

-2.0

2 V

2 V

-4.01

-4.0

3 V

3 V

-5.92

-6.0

4 V

4 V

-7.95

-8.0

 

 

 

 

 

 

 

 

 

 

 

 

 

Difference Amplifier:

Observation Table 4

Vin1

Vin2

Vout

 

 

Experimental

Calculated

1 V

1 V

1.01

1

2 V

2 V

1.49

2

3 V

3 V

2.95

3

4 V

4 V

4.00

4

AVG

2.3625

2.5

 

 

 

 

 

 

 

 

                                                                    

 

 

                                                                                                 

EXPERIMENT NO. 4

Object: To study the input and output characteristic of PNP transistor in CE mode and to calculate h parameters of a transistor.

Observation:

Input characteristics: At constant Vce = 0V, 1V, 2V, 3V

Sr. No.

Vce =            00 V

Vce =            0.5 V

Vce =            1.0 V

Vce =           1.5 V

Emitter Base voltage Vbe

Base current

Ib (μA)

Emitter Base voltage Vbe

Base current

Ib (μA)

Emitter Base voltage Vbe

Base current

Ib (μA)

Emitter Base voltage Vbe

Base current

Ib (μA)

1.

0

0

0

0

0

0

0

0

2.

0.2

0

0.2

0

0.2

0

0.2

0

3.

0.4

0

0.4

0

0.4

0

0.4

0

4.

0.6

5

0.6

2.5

0.6

2.5

0.6

2

5.

0.8

10

0.8

8

0.8

7

0.8

7

6.

1.0

17.5

1.0

15

1.0

15

1.0

15

7.

1.2

20

1.2

19

1.2

18

1.2

18

8.

1.4

29

1.4

25

1.4

25

1.4

25

9.

1.6

36

1.6

35

1.6

35

1.6

35

10.

1.8

44

1.8

41

1.8

40

1.8

40

 

 

 

 

 

 

 

 

 

 

 

Sr. No.

Ib = 25μA

Ib = 50μA

Ib = 100μA

Ib = 150μA

 

Collector Emitter Voltage

(Vce)

Collector current

Ic

(mA)

Collector Emitter Voltage

(Vce)

Collector current

Ic

(mA)

Collector Emitter Voltage

(Vce)

Collector current

Ic

(mA)

Collector Emitter Voltage

(Vce)

Collector current

Ic

(mA)

1.

0

0

0

0

0

0

0

0

2.

0.1

0.5

0.1

1

0.1

3.5

0.1

4

3.

0.15

2

0.15

3.5

0.15

6

0.15

9

4.

0.2

2.5

0.2

5

0.2

8.5

0.2

13.5

5.

0.25

2.5

0.25

5.5

0.25

10

0.25

15

6.

0.3

2.5

0.3

5.5

0.3

10.5

0.3

16

7.

0.35

2.5

0.35

5.5

0.35

10.5

0.35

16

8.

0.4

2.5

0.4

5.5

0.4

10.5

0.4

16

9.

0.45

2.5

0.45

5.5

0.45

10.5

0.45

16

10.

0.5

2.5

0.5

5.5

0.5

10.5

0.5

16

 

 

 

Calculations:

Input Impedance:

For the graph VCE = 0V;

Ri = (1.0-0.8)/ (17.5-10) µA = 26.6×10-3Ω

Output Impedance:

For the graph Ib = 50µA;

Ro = (0.20-0.15)/(5.5-3.5) mA = 0.025×103 Ω

 

 

Result: h-parameters of a transistor in CE configuration are:

Input Impedance: h11 = hie = 26.6×10-3 Ω

Output Impedance: h22 = hoe = 0.025×10-3 Ω

 

 

 

 

 

EXPERIMENT: 5 (A)

Object: To study characteristics of a Field Effect Transistor (FET)

Observation Table:

 

·       Output Characteristic:

 

 

Sr.

No.

Vgs = - 0. 2                    Volts

Vgs = - 0.4 Volts

Vgs = - 0.8 Volts

Vds (volts)

Id (mA)

Vds (volts)

Id

(mA)

Vds (volts)

Id

(mA)

1.

0.5

0.4

0.5

0.4

0.5

0.4

2.

1.5

1.1

1.0

0.7

1.0

0.8

3.

2.0

1.7

1.5

1.2

1.5

1.2

4.

2.5

2.0

2.0

1.6

2.0

1.6

5.

3.5

2.6

2.5

1.8

2.5

1.8

6.

4.0

2.9

3.0

2.3

3.0

2.1

7.

5.0

3.2

4.0

2.8

3.5

2.4

8.

6.0

3.4

4.5

2.9

4.0

2.6

9.

8.0

3.5

6.0

3.0

4.5

2.7

10.

10.0

3.6

 

 

5.0

2.8

 

 

 

 

 

 

 

 

 

 

·       Transfer Characteristic:

 

S. No.

Vds (volt) = 5 V

Vds (volt) = 10 V

Vgs

(volt)

Id

 (mA)

Vgs

(volt)

Id

(mA)

1

0.2

         3.0

0.2

3.4

2

0.4

     2.9

0.4

3.2

3

0.8

     2.7

0.8

3.0

4

1.0

     2.6

1.0

2.8

5

1.2

     2.4

1.2

2.7

6

1.4

          2.3

1.4

2.5

7

1.8

         2.0

1.8

2.3

8

2.0

         1.8

2.0

2.0

9

2.2

         1.7

2.2

1.9

10

2.4

         1.6

2.4

      1.7

 

Note: Only one transfer characteristics curve is to be plotted on one graph paper.

Graphs: Output characteristics: Plot graphs of Id against Vds on constant Vgs, one graph paper.

Graphs: Transfer characteristics: Plot graphs of Id against Vgs on a separate graph paper.

 

Results: The drain characteristics are similar to that of a pentode value. The current is almost independent of drain voltage above ‘PINCH OFF’. The input resistance is essentially that of a reverse biased p-n (gate of source) junction, therefore is very high.

 

Transfer characteristic is similar to that of a vacuum triode.

 

EXPERIMENT NO. 5 (B)

 

Object: To study output and transfer characteristics of a Metal Oxide Silicon Field Effect Transistor (MOSFET) and to identify type of MOSFET.

 

Observation Table:

 

  • Output Characteristic:

 

 

S. No.

Vgs (volt) = 3.2 Volts

Vgs (volt) = 3.3 Volts

Vgs (volt) = 3.4 Volts

Vds

(volt)

Id

(mA)

Vds

(volt)

Id

(mA)

Vds

(volt)

Id

(mA)

1.

0.05

0.1

0.05

0.15

0.05

0.35

2.

0.1

0.1

0.1

0.2

0.1

0.60

3.

0.15

0.1

0.15

0.25

0.15

0.80

4.

0.2

0.1

0.2

0.25

0.2

0.80

5.

0.25

0.1

0.25

0.25

0.25

0.80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

·       Transfer Characteristic:

 

S. No.

Vds (volt) = 2 Volts

Vds (volt) = 5 Volts

 

Vgs

(volt)

Id

(mA)

Vgs

(volt)

Id

(mA)

1.

0

0

0

0

2.

0.2

0

1.5

0

3.

0.4

0

2.5

0

4.

2,5

0

3.0

0.3

5.

3.0

0.1

3.4

1.0

6.

3.4

1.0

3.6

3.6

7.

3.6

1.3

4.0

4.0

8.

3.9

1.3

4.2

4.0

9.

5.0

1.3

4.4

4.0

10.

_

_

4.6

4.2

 

 

Graphs: Output Characteristic: Plot graph between Vds and Id keeping Vgs constant.                                                    

Graphs: Transfer Characteristic: Plot drain current Id against Vgs on a separate graph paper.

 

Results:

Cut-off region is a region in which the MOSFET will be OFF as there will be no current flow through it. Ohmic or linear region is a region where in the current IDS increases with an increase in the value of VDS. When MOSFET's are made to operate in this region, they can be used as amplifiers. In saturation region, the MOSFETs have their IDS constant in spite of an increase in VDS and occurs once VDS exceeds the value of pinch-off voltage VP.

 

EXPERIMENT NO. 6

Object: To study the V-I characteristics of a Uni-Junction Transistor (UJT).

Diagram:

UJT Characteristics Apparatus & UJT as Relaxation Oscillator

 

 

 

Observation Table:

 

S.No.

VB2B1=5V

VB2B1=10 V

VB2B1=15 V

 VE(V)

IE (mA)

VE (V)

IE (mA)

VE (V)

IE (mA)

1

0 V

0 mA

0 V

0 mA

0 V

0 mA

2

0.5 V

0 mA

0.5 V

0 mA

0.5 V

0.025 mA

3

1.25 V

0.1 mA

1.25 V

0.075 mA

1.25 V

0.075 mA

4

2 V

0.125 mA

2 V

0.125 mA

2 V

0.125 mA

5

2.5 V

0.15 mA

2.5 V

0.15 mA

2.5 V

0.150 mA

6

3 V

0.2 mA

3 V

0.175 mA

3.75 V

0.225 mA

7

1.25 V

10 mA

3.75 V

0.225 mA

5 V

0.3 mA

8

1.25 V

15 mA

6.25 V

0.375 mA

6.25 V

0.375 mA

9

1.25 V

20 mA

1.25V

5 mA

7.5 V

0.45 mA

10

 

 

1.25 V

10 mA

8.75 V

0.525 mA

11

 

 

1.25 V

15 mA

10 V

0.575 mA

12

 

 

 

 

1.25 V

5 mA

13

 

 

 

 

1.25 V

10 mA

14

 

 

 

 

1.25 V

15 mA

15

 

 

 

 

1.25 V

20 mA

 

 

 

 

 

 

 

 

 

 

 

 

Characteristics of UJT:

In figure shows the curve between emitter voltages (VE) and the emitter current (IE) of a UJT at a given voltage VBB between the bases. This is known as the emitter characteristic:

1.      Initially, in the cutoff region, as VE increases from zero, slight leakage current flows from terminal B2 to the emitter. This current is due to the minority carriers in the reverse biased diode.

2.     Above a certain value of VE, forward current IE begins to flow, increasing until the peak voltage VP and current IP are reached at point P.

3.     After the peak point P, at attempt to increase VE is followed by a sudden increase in emitter current IE with a corresponding decrease in VE. Then negative portion of the curve because with increase in IE, VE decreases.

4.     The negative portion of the curve lasts until the valley point V is reached with valley point voltage Vv and valley point current Iv. After the valley point, the device is to saturation.